JURUQ

Impact of extraction and pre-treatment methods over physicochemical properties of cashew nut-shell liquid.

Johan León

Universidad de los Andes

Camilo Hernandez

Escuela Colombiana de Ingeniería Julio Garavito

Alejandro Marañón Universidad de los Andes

Oscar Álvarez Universidad de los Andes **Gabriela Ortiz** *Universidad de los Andes*

Camilo Ayala Universidad de los Andes

Andrés Gonzalez Universidad de los Andes

Alicia Porras Universidad de los Andes

Let me introduce:

Let me introduce:

00 \bigcirc UMPUN

Sustainable Cashew

00 UTUL

Strengthen cashew productive chain in Vichada Department

JUPUI Integration of knowledge

Universidad de Ios Andes

Multidisciplinary team

00

Mechanical Engineering

 \bigcirc

Escuela Colombiana de Ingeniería Julio Garavito

Carlos Pino Researcher Anderson Sánchez Researcher Hernán Camilo Pacheco Researcher **Javier Urbano** Professor

C. Hernandez **Project Leader**

Field work

P.Carreño, Vichada **Fidel Cano Flórez** Agricultural Engineer **Amalia Aguilera** Agricultural Engineer **Muriel Murillo** Ecological agricultural production technologist

A. Porras Project Director

A. Marañón **Project Leader**

Universidad de los Andes Johan León Researcher

Gabriela Ortiz

Researcher

ESCUELA COLOMBIANA DE INGENIERÍA JULIO GARAVITO

Universidad de los Andes

Design

Universidad de los Andes

Santiago de Francisco Vela

Professor

Leonardo Parra Agudelo

Professor

Jessica Rodríguez

Researcher

Carolina Pérez R

Researcher

Clara Forero L

Researcher

Leyla MarulandaA

6

C. Ayala **Project Leader**

Master in technological nnovation management

O. Álvarez **Project Leader**

A. Gonzalez Professor

Cashew nut: Global production

^aDaniel Mervar, (2022), Tridge Agricultural and food database .

Global cashew production is forecasted in 4.46 MT in 2023^a

Cashew nut: Perspective in Colombia

- There are 8200 acres of cashew tree cultivated in Vichada department.^a
- Each acre produces almost 200kg ofcashew nut each year^a

^aMateus, D et al (2022). Marañón: Un acercamiento al contexto productivo, social, ambiental y agroindustrial en la altillanura de Vichada

8

Products and by-products of cashew processing

Cashew Nut Shell Liquid (CNSL)

From cashew nut to cashew kernel

Shelled cashew nut

Cashew nuts are roasted in a hot CNSL bath so the shell becomes brittle

Steaming

Cashew nuts are heated with high pressure steam to soften the shell

10

Current Management of CNS in Vichada

Estimated production of 410 Ton/year^a

^aMateus, D et al (2022). Marañón: Un acercamiento al contexto productivo, social, ambiental y agroindustrial en la altillanura de Vichada

Estimated generation of 1230 Ton/year^a

Current Management of CNS in Vichada

 Cashew nut shells are either burned as fuel or treated as solid waste

 Cashew value chain can be enhanced by properly using by-products

From CNS to CNSL

Solvent extraction

Mechanical extraction

Thermal extraction

Residual CNS

Valuable CNSL

Alternatives such a soxhlet apparatus or supercritical fluid extraction

Alternatives such as screw press or hydraulic press

Alternatives such as open pan roasting, hot oil roasting or drum roasting

Our approach to product and process design:

roperties

14

AIM OF STUDY: Evaluate the impact of extraction and pre-treatment methods on CNSL properties

Properties

15

Physicochemical characterization

D

Viscosity Flow sweep 1-100 1/s

Fig 1. CNSL viscosity vs Extraction methods.

Fig 1. CNSL viscosity vs Extraction methods.

CNSL from steamed CNS recovered by solvent extraction shows lower viscosity

Fig 1. CNSL viscosity vs Extraction methods.

CNSL from steamed CNS recovered by solvent extraction shows lower viscosity

Solvent selectivity doesn't favor the extraction of gums and waxes

Yuliana M, (2012)

17

Saponification value

Fig 2. CNSL Saponification value vs Extraction methods

Saponification value

Fig 2. CNSL Saponification value vs Extraction methods

CNSL from steamed CNS recovered by solvent extraction shows lower saponification value

Saponification value

Fig 2. CNSL Saponification value vs Extraction methods

CNSL from steamed CNS recovered by solvent extraction shows lower saponification value

> Solvent polarity allow to extract longer fatty acid chains

High temperatures may cause fatty acid chain degradation

Dordević, D.(2020).

Supercritical CO2 (roasted)

Acid Value

Fig 3. CNSL Acid value vs Extraction methods

Acid Value

Fig 3. CNSL Acid value vs Extraction methods

CNSL from roasted CNS shows higher acid value

19

Acid Value

Fig 3. CNSL Acid value vs Extraction methods

CNSL from roasted CNS shows higher acid value

Roasting damages cellular structure of the shell, thus increasing acidity as a result of enzymatic activity.

extracted

Hosseini Bai S (2017)

Fig 4. DPPH EC50 vs Extraction methods

20

Fig 4. DPPH EC50 vs Extraction methods

Pressed CNSL shows lower antioxidant capacity than solvent and thermally extracted CNSL

Fig 4. DPPH EC50 vs Extraction methods

Pressed CNSL shows lower antioxidant capacity than solvent and thermally extracted CNSL

> Solvent can extract other components from the shell with high antioxidant capacity

Damaging of cellular structure by roasting releases antioxidant extractives from the shell

Hosseini Bai S (2017)

Preliminary result:

Extraction and pre-treatment methods have an effect over some physicochemical properties of CNSL as an oil.

Preliminary result:

Extraction and pre-treatment methods have an effect over some physicochemical properties of CNSL as an oil.

Is CNSL similar to vegetable oils?

CNSL vs vegetable oils

		CNSL	Sunflowe Oil ^a
Vis	cosity (cP)	260-625	48
Sa (m	oonification Value gKOH/g)	105-203	188-194
Ac (m)	id Value gKOH/g)	44-108	0.9
EC	250 (µg/mL)	114-522	14000

^a Aboki,M et al. (2012).

00

0

^b Arawande, J & Amoo, I.A. (2009).

^c Abdel Moneim E(2007)

jurui	CNSL vs vegeto		
	CNSL	Contraction of the second seco	
Viscosity (cP)	260-625	48	
Saponification Val (mgKOH/g)	ue 105-203	188-194	
Acid Value (mgKOH/g)	44-108	0.9	
EC50 (µg/mL)	114-522	14000	

^a Aboki,M et al. (2012).

^b Arawande, J & Amoo, I.A. (2009).

^c Abdel Moneim E(2007)

able oils

JUTUI	CNSL vs vegeto		
		CNSL	Contraction of the second seco
Viscosit	y (cP)	260-625	48
Saponific Value (mg	ation gKOH/g)	105-203	188-19
Acid Val (mgKOF	ue I/g)	44-108	0.9
EC50 (μ	ıg/mL)	114-522	14000

^a Aboki,M et al. (2012).

^b Arawande, J & Amoo, I.A. (2009).

^c Abdel Moneim E(2007)

able oils

00 CNSL vs vegetable oils **Sunflower** Soybean **CNSL Oil**^b Oila Viscosity (cP) 260-625 48 48 Saponification Value 180-200 105-203 188-194 (mgKOH/g) Acid Value 44-108 0.9 0.5 (mgKOH/g) $EC50 (\mu g/mL)$ 114-522 14000 10000

^a Aboki,M et al. (2012).

^b Arawande, J & Amoo, I.A. (2009).

^c Abdel Moneim E(2007)

Uruî	CNSL vs vegeto		
		CNSL	Contraction of the second seco
	Viscosity (cP)	260-625	48
	Saponification Value (mgKOH/g)	105-203	188-194
	Acid Value (mgKOH/g)	44-108	0.9
E	C50 (µg/mL)	114-522	14000

^a Aboki,M et al. (2012).

00

^b Arawande, J & Amoo, I.A. (2009).

^c Abdel Moneim E(2007)

able oils

CNSL vs vegetable oils

	CNSL	Contraction of the second seco
Viscosity (cP)	260-625	48
Saponification Value (mgKOH/g)	105-203	188-194
Acid Value (mgKOH/g)	44-108	0.9
EC50 (µg/mL)	114-522	14000
^a Aboki,M et al. (2012). ^b Arawande, J & Amoo, I.A (2009) ^c Abdel Moneim E(2007)	CNSL is cons	iderably diffe

00

0

rent than other vegetable oils

22

Fig 5. FTIR spectrums of CNSL samples

Vibration of OH groups

OH Н

Vibration of C–C bonding, typical of alyphatic chains

Vibration of C=O bonding, typical on carboxylic acids

Vibration of C=C bonding, typical on benzene rings.

Fig 5. FTIR spectrums of CNSL samples

All samples present the typical functional groups of phenolic lipids

Anacardic Acid

Fig 5. FTIR spectrums of CNSL samples

Thermally extracted CNSL doesn't show vibration of carbonyl group

Decarboxylation of Anacardic acid

Anacardic Acid

Cardanol

00 0

HPLC

Identification of phenolic lipids

25

00 0

HPLC

Identification of phenolic lipids

Anacardic acid (AA)

min

00

0

Phenolic lipids are in similar proportions between CNSL extracted by solvent or pressing

min

High content of A.A in **CNSL**

HPLC

Thermal extraction promotes descarboxylation of CNSL

mir

Thermally extracted CNSL has high content of cardanol

CNSL: Valuable by-product

CNSL: Source of phenolic lipids

CNSL vs vegetable oils

	CNSL	Contraction of the second seco
Viscosity (cP)	260-625	48
Saponification Value (mgKOH/g)	105-203	188-194
Acid Value (mgKOH/g)	44-108	0.9
EC50 (µg/mL)	114-522	14000

^a Aboki,M et al. (2012).

00

0

^b Arawande, J & Amoo, I.A. (2009).

^c Abdel Moneim E(2007)

Enzymatic Inhibitors

Green Insecticides

Polymeric Resins Additives

CNSL: Sustainable raw material

Surfactants

Effects of extraction and pretreatment methods on CNSL

Both pre-treatment and extraction methods show an effect over physicochemical properties of CNSL as an oil.

CNSL: source of phenolic lipids

Physicochemical properties of CNSL differ from those of conventional vegetable oils due to the presence of phenolic lipids. However, only thermal extraction seems to affect phenolic lipid profile due to descarboxylation reaction.

Conclusion:

CNSL: Potentially sustainable raw material

CNSL chemical composition makes it a suitable raw material for sustainable product design.

Acknoledgments

The authors would like to thank the Ministry of Science, Technology and Innovation and the OCAD of ACTeI, who carried out the feasibility, prioritization, and approval of this research with resources from the General Royalties System – SGR in the Call No. 6 of the Project "USE OF AGROINDUSTRIAL BY–PRODUCTS OF CASHEW PROCESSING IN VICHADA DEPARTMENT– BPIN 202000100571". Likewise, we thank the government and the community of the department in general for their interest and participation in the activities carried out to date

The authors

Johan León, Gabriela Ortiz, Camilo Hernandez, Camilo Ayala, Alejandro Marañón, Andrés Gonzalez, Óscar Álvarez, Alicia Porras35

ESCUELA COLOMBIANA DE INGENIERÍA JULIO GARAVITO

Universidad de Ios Andes